Interim Final 2/5/99 # RCRA Corrective Action Environmental Indicator (EI) RCRIS code (CA750) #### Migration of Contaminated Groundwater Under Control Facility Name: <u>Nashua Corporation</u> Facility Address: 3838 South 108th Street, Omaha, Nebraska Facility EPA ID #: NED045275260 | 1. | Has all available relevant/significant information on known and reasonably suspected releases to the groundwater media, subject to RCRA Corrective Action (e.g., from Solid Waste Management Units (SWMU), Regulated Units (RU), and Areas of Concern (AOC)), been considered in this EI determination | | |----|--|--| | | X | If yes - check here and continue with #2 below. | | | | If no - re-evaluate existing data, or | | | | if data are not available, skip to #8 and enter"IN" (more information needed) status code. | | | | | #### **BACKGROUND** #### **Definition of Environmental Indicators (for the RCRA Corrective Action)** Environmental Indicators (EI) are measures being used by the RCRA Corrective Action program to go beyond programmatic activity measures (e.g., reports received and approved, etc.) to track changes in the quality of the environment. The two EI developed to-date indicate the quality of the environment in relation to current human exposures to contamination and the migration of contaminated groundwater. An EI for non-human (ecological) receptors is intended to be developed in the future. #### **Definition of "Migration of Contaminated Groundwater Under Control" EI** A positive "Migration of Contaminated Groundwater Under Control" EI determination ("YE" status code) indicates that the migration of "contaminated" groundwater has stabilized, and that monitoring will be conducted to confirm that contaminated groundwater remains within the original "area of contaminated groundwater" (for all groundwater "contamination" subject to RCRA corrective action at or from the identified facility (i.e., site-wide)). #### Relationship of EI to Final Remedies While Final remedies remain the long-term objective of the RCRA Corrective Action program the EI are near-term objectives which are currently being used as Program measures for the Government Performance and Results Act of 1993, GPRA). The "Migration of Contaminated Groundwater Under Control" EI pertains ONLY to the physical migration (i.e., further spread) of contaminated ground water and contaminants within groundwater (e.g., non-aqueous phase liquids or NAPLs). Achieving this EI does not substitute for achieving other stabilization or final remedy requirements and expectations associated with sources of contamination and the need to restore, wherever practicable, contaminated groundwater to be suitable for its designated current and future uses. #### **Duration / Applicability of EI Determinations** EI Determinations status codes should remain in RCRIS national database ONLY as long as they remain true (i.e., RCRIS status codes must be changed when the regulatory authorities become aware of contrary information). Page 2 | 2. | Is groundwater known or reasonably suspected to be "contaminated" above appropriately protective "levels" (i.e., applicable promulgated standards, as well as other appropriate standards, guidelines, guidance, or criteria) from releases subject to RCRA Corrective Action, anywhere at, or from, the facility? | | | |----|---|---|--| | | X | If yes - continue after identifying key contaminants, citing appropriate "levels," and referencing supporting documentation. | | | | | If no - skip to #8 and enter "YE" status code, after citing appropriate "levels," and referencing supporting documentation to demonstrate that groundwater is not "contaminated." | | | | | If unknown - skip to #8 and enter "IN" status code. | | | | Rationale and Re | ference(s): Toluene has been detected in on-site and off-site groundwater above its | | | | Maximum Conta | minant Level (MCL). During the latest sampling events, the highest concentration of | | | | toluene in wells 2P-112, 2P-108, and MW-12 were 347,000 μg/L, 223,000 μg/L, and 397,000 μg/L, | | | | | respectively (Sep | tember 2002 Quarterly Report #9). The MCL for toluene is 1000 µg/L. | | | | | | | #### Footnotes: ¹"Contamination" and "contaminated" describes media containing contaminants (in any form, NAPL and/or dissolved, vapors, or solids, that are subject to RCRA) in concentrations in excess of appropriate "levels" (appropriate for the protection of the groundwater resource and its beneficial uses). Page 3 Has the **migration** of contaminated groundwater **stabilized** (such that contaminated groundwater is expected to remain within "existing area of contaminated groundwater" as defined by the monitoring 3. | locations designa | cations designated at the time of this determination)? | | | |-------------------|---|--|--| | X | If yes - continue, after presenting or referencing the physical evidence (e.g., groundwater sampling/measurement/migration barrier data) and rationale why contaminated groundwater is expected to remain within the (horizontal or vertical) dimensions of the "existing area of groundwater contamination". | | | | | If no (contaminated groundwater is observed or expected to migrate beyond the designated locations defining the "existing area of groundwater contamination" ²) - skip to #8 and enter "NO" status code, after providing an explanation. | | | | | If unknown - skip to #8 and enter "IN" status code. | | | Rationale and Reference(s): The compacted fills, 30-40 feet thick, underneath the interstate are expected to block the shallow groundwater from flowing north (July 1999 Comprehensive Groundwater Monitoring Evaluation ('99 CGME)). Deeper borings encountered silts, clays, and tills, which are expected to impede migration in the deep groundwater (January 2001 Comprehensive Current Conditions Report ('01 CCCR)). Based on past sampling events, toluene was not detected in any of the deep monitoring wells (Quarterly Report #4, Sept. 2001). The dissolved toluene plume was observed to shrink from 1993 through 2002 (Quarterly Report # 9, Dec. 2002. Furthermore, removal of the toluene source using the 2-PHASE Extraction System creates conditions along the plume's outer extents suitable for natural attenuation (toluene< 100 ppm), preventing plume migration (Corrective Measures Study Feb. 11, 2002). ² "existing area of contaminated groundwater" is an area (with horizontal and vertical dimensions) that has been verifiably demonstrated to contain all relevant groundwater contamination for this determination, and is defined by designated (monitoring) locations proximate to the outer perimeter of "contamination" that can and will be sampled/tested in the future to physically verify that all "contaminated" groundwater remains within this area, and that the further migration of "contaminated" groundwater is not occurring. Reasonable allowances in the proximity of the monitoring locations are permissible to incorporate formal remedy decisions (i.e., including public participation) allowing a limited area for natural attenuation. | 4. | Does "contaminated" groundwater discharge into surface water bodies? | | |----|---|--| | | _X_ If yes - continue after identifying potentially affected surface water bodies. | | | | If no - skip to #7 (and enter a "YE" status code in #8, if #7 = yes) after providing an explanation and/or referencing documentation supporting that groundwater "contamination" does not enter surface water bodies. | | | | If unknown - skip to #8 and enter "IN" status code. | | | | Rationale and Reference(s): Contaminated groundwater has historically been known to discharge into the storm drain, which leads to a creek that discharges to Big Papillion Creek. Toluene iso-concentrations | | Rationale and Reference(s): Contaminated groundwater has historically been known to discharge into the storm drain, which leads to a creek that discharges to Big Papillion Creek. Toluene iso-concentrations generated for the '01 CCCR show approximately 1000 µg/L, but less than 10,000 µg/L, of toluene intersecting the drainage ditch. The drainage ditch is an intermittent stream and is dry except during and immediately after a rain. Contaminants have not been detected above MCLs 800' from the site where the ditch empties into Big Papillion Creek (Quarterly Report #4, Sept. 2001). 5. Is the discharge of "contaminated" groundwater into surface water likely to be "insignificant" (i.e., the | appropriate grou
discharging cont | mum concentration ³ of each contaminant discharging into surface water is less than 10 times their opriate groundwater "level," and there are no other conditions (e.g., the nature, and number, of arging contaminants, or environmental setting), which significantly increase the potential for ceptable impacts to surface water, sediments, or eco-systems at these concentrations)? | | | |--------------------------------------|---|--|--| | X | If yes - skip to #7 (and enter "YE" status code in #8 if #7 = yes), after documenting: 1) the maximum known or reasonably suspected concentration ³ of <u>key</u> contaminants discharged above their groundwater "level," the value of the appropriate "level(s)," and if there is evidence that the concentrations are increasing; and 2) provide a statement of professional judgement/explanation (or reference documentation) supporting that the discharge of groundwater contaminants into the surface water is not anticipated to have unacceptable impacts to the receiving surface water, sediments, or eco-system. | | | | | If no - (the discharge of "contaminated" groundwater into surface water is potentially significant) - continue after documenting: 1) the maximum known or reasonably suspected concentration of each contaminant discharged above its groundwater "level," the value of the appropriate "level(s)," and if there is evidence that the concentrations are increasing; and 2) for any contaminants discharging into surface water in concentrations greater than 100 times their appropriate groundwater "levels," the estimated total amount (mass in kg/yr) of each of these contaminants that are being discharged (loaded) into the surface water body (at the time of the determination), and identify if there is evidence that the amount of discharging contaminants is increasing. | | | | | If unknown - enter "IN" status code in #8. | | | Rationale and Reference(s): Toluene iso-concentrations generated for the '01 CCCR show approximately $1000~\mu g/L$, but less than $10,000~\mu g/L$, of toluene intersecting the drainage ditch. The MCL for toluene is $1000~\mu g/L$, so the concentration potentially entering the drainage ditch is less than 10 times the MCL. Furthermore, surface water sampling data indicate concentrations below $1000~\mu g/L$ for a period of over eight years (from February 1991 through March 2000), after which sampling was suspended based on the continually low concentrations ('01 CCCR). The low concentrations potentially entering the drainage ditch and the fact that the drainage ditch water passes through a culvert before entering the creek makes it unlikely that there will be any significant impacts. Additionally, recent site observations have noted only sporadic occurrences of surface water in the drainage ditch. ³ As measured in groundwater prior to entry to the groundwater-surface water/sediment interaction (e.g., hyporheic) zone. | 6. | Can the discharge of "contaminated" groundwater into surface water be shown to be " currently acceptable " (i.e., not cause impacts to surface water, sediments or eco-systems that should not be allowed to continue until a final remedy decision can be made and implemented ⁴)? | | |----|---|--| | | If yes - continue after either: 1) identifying the Final Remedy decision incorporating these conditions, or other site-specific criteria (developed for the protection of the site's surface water, sediments, and eco-systems), and referencing supporting documentation demonstrating that these criteria are not exceeded by the discharging groundwater; OR 2) providing or referencing an interim-assessment, ⁵ appropriate to the potential for impact, that shows the discharge of groundwater contaminants into the surface water is (in the opinion of a trained specialists, including ecologist) adequately protective of receiving surface water, sediments, and eco-systems, until such time when a full assessment and final remedy decision can be made. Factors which should be considered in the interim-assessment (where appropriate to help identify the impact associated with discharging groundwater) include: surface water body size, flow, use/classification/habitats and contaminant loading limits, other sources of surface water/sediment contamination, surface water and sediment sample results and comparisons to available and appropriate surface water and sediment "levels," as well as any other factors, such as effects on ecological receptors (e.g., via bio-assays/benthic surveys or site-specific ecological Risk Assessments), that the overseeing regulatory agency would deem appropriate for making the EI determination. | | | | If no - (the discharge of "contaminated" groundwater can not be shown to be "currently acceptable") - skip to #8 and enter "NO" status code, after documenting the currently unacceptable impacts to the surface water body, sediments, and/or eco-systems. | | | | If unknown - skip to 8 and enter "IN" status code. | | ## Rationale and Reference(s): Not Applicable - ⁴ Note, because areas of inflowing groundwater can be critical habitats (e.g., nurseries or thermal refugia) for many species, appropriate specialist (e.g., ecologist) should be included in management decisions that could eliminate these areas by significantly altering or reversing groundwater flow pathways near surface water bodies. - ⁵ The understanding of the impacts of contaminated groundwater discharges into surface water bodies is a rapidly developing field and reviewers are encouraged to look to the latest guidance for the appropriate methods and scale of demonstration to be reasonably certain that discharges are not causing currently unacceptable impacts to the surface waters, sediments or eco-systems. Page 7 | 7. | Will groundwater monitoring / measurement data (and surface water/sediment/ecological data, as necessary) be collected in the future to verify that contaminated groundwater has remained within the horizontal (or vertical, as necessary) dimensions of the "existing area of contaminated groundwater?" | | | |----|---|--|--| | | X | If yes - continue after providing or citing documentation for planned activities or future sampling/measurement events. Specifically identify the well/measurement locations which will be tested in the future to verify the expectation (identified in #3) that groundwater contamination will not be migrating horizontally (or vertically, as necessary beyond the "existing area of groundwater contamination." | | | | | If no - enter "NO" status code in #8. | | | | | If unknown - enter "IN" status code in #8. | | | | | | | Rationale and Reference(s): <u>Currently groundwater is being sampled quarterly under the Administrative Order on Consent (AOC) between Nashua Corporation and the United States Environmental Protection Agency Region 7 for the Label Products Division RCRA Corrective Action. In addition, future groundwater monitoring will be a part of any final corrective measure undertaken at the facility.</u> 8. Check the appropriate RCRIS status codes for the Migration of Contaminated Groundwater Under Control EI (event code CA750), and obtain Supervisor (or appropriate Manager) signature and date on the EI determination below (attach appropriate supporting documentation as well as a map of the facility). | | | - | | | |-----------------|---|--|--|--| | _YE_ | YE - Yes, "Migration of Contaminated Groundwater verified. Based on a review of the information contain determination, it has been determined that the "Migrat Groundwater" is "Under Control" at the Nashua Label ID #NED045275260, located at 3838 South 108 th Str. Specifically, this determination indicates that the migr groundwater is under control, and that monitoring will that contaminated groundwater remains within the "ex contaminated groundwater" This determination will be Agency becomes aware of significant changes at the fa | ned in this EI tion of Contaminated 1 Products facility, EPA reet, Omaha, Nebraska. ration of "contaminated" 1 be conducted to confirm cisting area of e re-evaluated when the | | | | | NO - Unacceptable migration of contaminated groundwater is observed or ex | | | | | | IN - More information is needed to make a determina | ation. | | | | Completed by | Original signed by (print) William F. Lowe (title) Project Manager | | | | | Supervisor | Original signed by (print) Scott Marquess (title) RCAP Chief EPA Region 7 | Date5/6/03 | | | | Locations where | References may be found: | | | | | 9 | Region 7 RCRA Records Center | | | | | - | ne and e-mail numbersBill Lowe | | | | | (phone | #)_913-551-7547 | | | | | (e-mail |) lowe.bill@epa.gov | | | |